Light Vehicle Diesel Engines First Edition

Light Vehicle Diesel Engines

Chapter 3 Diesel Cylinder Heads & Valve Trains

PEARSON

LEARNING OBJECTIVES (1 of 2)

3.1 Prepare for the Light Vehicle Diesel Engine (A9) ASE certification test content area "B" (Cylinder Head and Valve Train Diagnosis and Repair).

3.2 Explain the design and construction of cylinder heads.

3.3 Discuss camshaft design and valve train component operation.

PEARSON

LEARNING OBJECTIVES (2 of 2)

3.4 Discuss the purpose and function of rocker arms and bridges.

3.5 Discuss the purpose, function, and operation of hydraulic valve lifters.

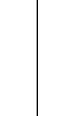
3.6 Describe how to disassemble a cylinder head.

3.7 Discuss valve-stem-to-guide clearance.

CYLINDER HEADS (1 of 4)

Cylinder Heads

- Cast iron/aluminum alloy
- Support valves & valve train
- Passages: intake air,
 - exhaust gases, coolant ■ Overhead camshaft
 - design
 - Supports all valve train components



 Number of degrees by which crankshaft rotates when valve is off valve seat

PEARSON

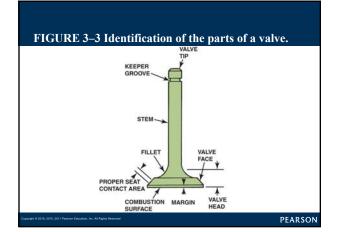
CYLINDER HEADS (3 of 4)

- Maximum Air Moving Through Valve Opening
- Depends on distance around valve & distance it lifts open
- Normal opening lift of 25%
 2" intake valve, normal amount of lift off seat is 25% of 2" or ½ inch

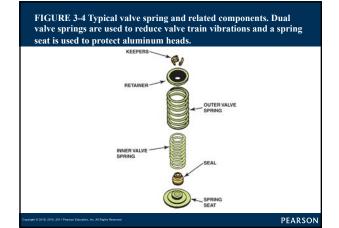
- Amount of air that can enter a cylinder depends on total area around valve, calculated by equation:
 - $-\pi$ x valve diameter

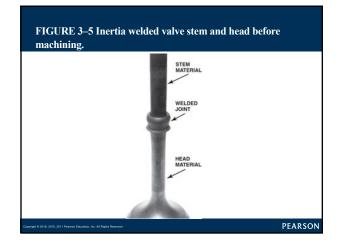
INTAKE AND EXHAUST VALVES (1 of 2)

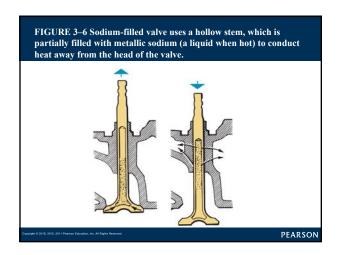
Intake Valves


- Control Inlet Of Cool, Low-pressure Induction Charges.

Exhaust Valves


- Handle Hot, High-pressure Exhaust G
 - Parts Involved
 - Valve Size Relationships
 - Valve MaterialsTwo-material Valves
 - Sodium-filled Valves


KEEPE



WARNING (1 OF 2)

If a sodium-filled valve is damaged and the sodium leaks out, it can cause a fire if exposed to water. Sodium reacts violently when exposed to water and burns uncontrollably.

QUESTION 1: ?

Why are Sodium filled valves used?

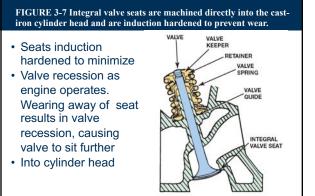
ANSWER 1:

Sodium-filled valve uses hollow stem, which is partially filled with metallic sodium (a liquid when hot) to conduct heat away from head of valve.

PEARSON

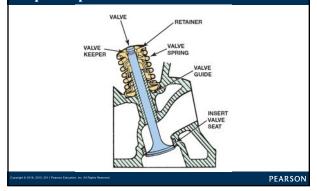
PEARSON

VALVE SEATS (1 of 3)


Valve Face Closes Against Valve Seat

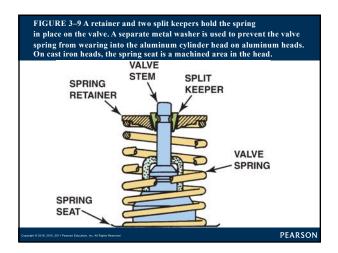
- Seal combustion chamber.
- Seat generally formed as part of cast-iron head
- Called integral seat
- Insert seat fits into machined recess in
 Steel or aluminum cylinder head

· Used in all aluminum head engines


– Insert seats

- HALDERMAN
- · Applications for which corrosion & wear resistance are critical

FIGURE 3–8 Insert valve seats are a separate part that is interference fitted to a

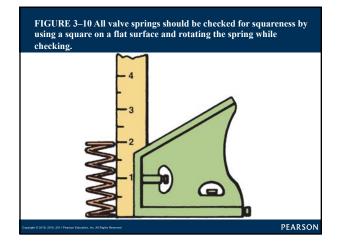


VAVLE SPRINGS (1 of 1)

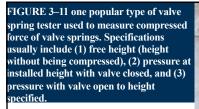
Valve Spring Holds

- Valve against seat when valve not being opened
- One end of valve spring seated against head
- Other end of spring attached under compression
- To valve stem through valve spring retainer
- & Valve spring keeper (lock)
 - Spring Materials & Design
 - Variable Rate Springs
 - Valve Spring Inspection

QUESTION 2: ?


Where do you position the close coil of a valve spring?

PEARSON


PEARSON

ANSWER 2:

Toward the cylinder head.

CYLINDER HEAD PASSAGES (1 of 3)

- Coolant flows from coolest portion of engine
 To warmest portion
 - Water pump circulates coolant from radiator
 - Through block around cylinders
 - Flows upward through head gasket to head
 - Returned to radiator to be cooled

<section-header><text><image>

CYLINDER HEAD PASSAGES (2 of 3)

Lubricating oil delivered to OHV

- Through pushrods, or through drilled passages
- Special openings in head gasket for oil
- After the oil passes through valve mechanisms
- returns to pan through oil return passages
 - Called drainback holes
 - Cast holes are large and not easily plugged

PEARSON

CYLINDER HEAD PASSAGES (3 of 3)

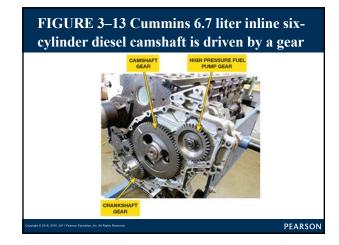
• NOTE: Many aluminum cylinder heads have smaller than-normal drain back holes. If an engine has excessive oil consumption, check the drain holes as a possible cause before removing engine.

CAMSHAFT (1 of 7)

- Camshaft opens valves
 - Eccentric shapes called lobes
 Open valve against force of valve springs.

- Valve spring closes valve when
- Camshaft rotates off lobe
- Camshaft lobe changes rotary motion (camshaft)
 - To linear motion (valves).
- Cam shape or contour is major factor
 - Determining operating characteristics of engine

PEARSON


CAMSHAFT (2 of 7)

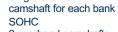
- Camshaft Driven By
 - Timing gears
 - -Timing chains

- Timing belts

Duramax Cam Driven by Gears

CAMSHAFT (3 of 7)

- Camshaft Located
 - In Engine Block
 - Cam-in-block Design
 - Camshaft supported in block by bearings.
 - Driven by crankshaft with gear/sprocket
 - Pushrod or overhead valve (OHV) engines



PEARSON

CAMSHAFT (4 of 7)

Overhead CAM

- Belt or chain driven from crankshaft
- Located in head(s)Called overhead
- camshaft (OHC) design • Single overhead

- 2 overhead camshafts per bank
- SEE FIGURE 3–14,
- NEXT SLIDE

CAMSHAFT (5 of 7)

Construction

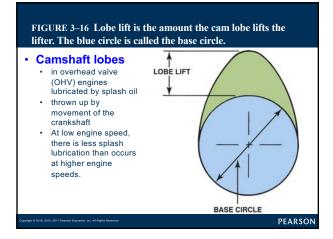
- Lobes
- Bearing journals
- Accessory drive gear

- Forged steel (often used in diesel engines)
- Steel machined from a solid billet
- Composite camshafts
 - Lightweight tubular shaft with hardened steel lobes, SEE Figure 3-15, NEXT SLIDE

PEARSON

FIGURE 3–15 Hardened steel lobes are a press-fit onto the hollow steel tube to create

CAMSHAFT (6 of 7)


• <u>NOTE</u>: Rockwell is a type of hardness test, and the represents the scale used. Higher the number is, harder surface. Abbreviation Rc60, indicates Rockwell hardness of 60 as measured on "c" scale

QUESTION 3: ?

What are eccentric shapes on Camshafts called ?

PEARSON

ANSWER 3: Lobes

CAMSHAFT (7 of 7)

Lobe Lift

- Higher lift of camshaft lobe
 Greater amount of air can enter engine
 More air in engine, greater power
 Lift Amount different for

 Intake and exhaust valves
- Asymmetrical specifications vary
- Symmetrical if lift is same

BASE CIRCLE FIGURE 3–16

PEARSON

ROCKER ARMS & BRIDGES (1 of 3)

Rocker Arm

- Reverses upward movement of pushrod
- Produce downward movement on tip of valve
- Designed to reduce travel of cam follower
 - Or Lifter & pushrod while maintaining required lift
- Done by using rocker arm ratio usually of 1.5:1.

PEARSON

ROCKER ARMS & BRIDGES (2 of 3)

Rocker arms may be

- Cast
- Forged
- Stamped steel

FIGURE 3–17 1.5:1 ratio rocker arm means that dimension A is 1.5 times length of dimension B. Therefore, if pushrod is moved up 0.4 inch by camshaft lobe, the valve will be pushed down (opened) 0.4 inch 3 1.5, or 0.6 inch.

FIGURE 3–18 Bridges are used in many light diesel engines so that one rocker arm

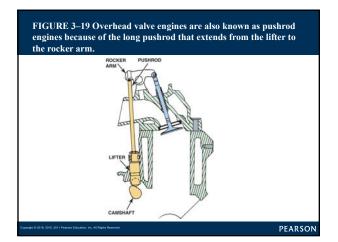
ROCKER ARMS & BRIDGES (3 of 3)

Bridges

- Also called Crossheads, LIKE rocker arms
- Used in diesel engines to span 2 valves
- From one pushrod
- Can be bent causing one of 2 valves to open less/more than other valve
- Valve clearance needs to be checked to make sure bridges are straight not warped or bent

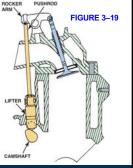
PEARSON

FIGURE 3-18


PUSHRODS (1 of 3)

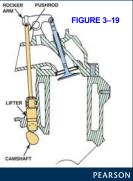
Pushrods

- Transfer lifting motion of valve train
- from cam lobe and lifters to rocker arms


PEARSON

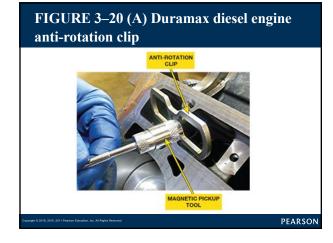
PUSHRODS (2 of 3)

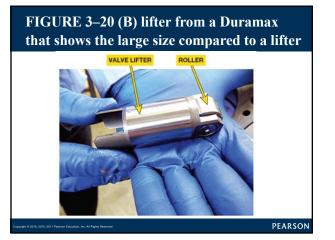
Pushrods


- Designed to be as light as possible
- Solid or hollow
- · Used as passages for oil
- to lubricate rocker arms, they must be hollow
- Use convex ball on lower end that seats in lifter
- Rocker arm end is also a convex ball

PUSHRODS (3 of 3)

Pushrods


- One of following changes made to engine, different pushrod length may be necessary:
 - Block deck height machined
 - Cylinder head deck height machined
 - Valve length increased (seats being ground)



LIFTER OR TAPPETS (1 of 3)

- Valve Lifters or Tappets
 - Follow contour or shape of camshaft lobe
 - Changes rotary cam motion to Reciprocating motion in valve train
 - Diesel engines use roller lifters

LIFTER OR TAPPETS (2 of 3)

Valve Adjustment

- Two methods used
 - One method involves solid valve lifter, adjusted mechanically at rocker arm, or by changing shims

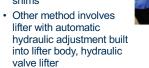
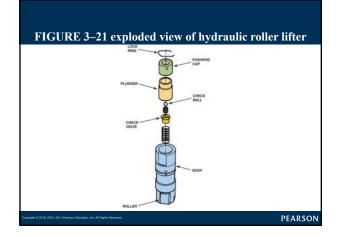



FIGURE 3-20 (B)

LIFTER OR TAPPETS (3 of 3)

HYDRAULIC LIFTERS

- Take up all clearance in valve train
 Hollow cylinder body enclosing hollow plunger, check valve, & pushrod cup.
- Lifters feed oil up through pushrod use metering disc under pushrod cup
- Engine oil under pressure fed through engine passage to exterior lifter body.
 Underrut partian ellour eil under prese
- Undercut portion allows oil under pressure to surround Lifter body
- Oil under pressure goes through holes in undercut section
 - Into center of plunger

PEARSON

LOCK RING

CAMSHAFT REMOVAL (1 of 2)

• CAM-IN-BLOCK ENGINES

- Overhead valve (OHV) design
- Camshaft located in block above crankshaft
- Timing chain & gears should be removed
- After timing chain (gear) cover is removed
- Loosen rocker arms (or rocker arm shaft)
- Remove pushrods
- Remove valve lifters before removing camshaft

PEARSON

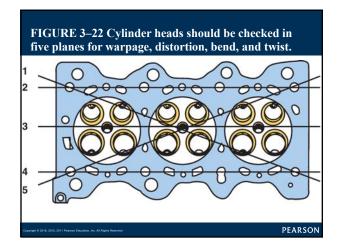
CAMSHAFT REMOVAL (2 of 2)

<u>NOTE:</u> Be sure to keep each pushrod and rocker arm matched together if they are to be reused.

CYLINDER HEAD DISASSEMBLY (1 of 4)

- Cylinder Head Servicing Sequence
- Disassembling Overhead Camshaft Head
- Valve Train Disassembly
- Cylinder Head Inspection

PEARSON


CYLINDER HEAD DISASSEMBLY (2 of 4)

- Cylinder Head Disassembly
 - Valve train components to be reused
 - Must be kept together
 - Be sure to keep top part of pushrod at top.
 - Keep rocker arms with same pushrods
 As they wear together.
 - Intake and exhaust valve springs can be different
 - Must be kept with correct valve

PEARSON

WARNING (2 OF 2)

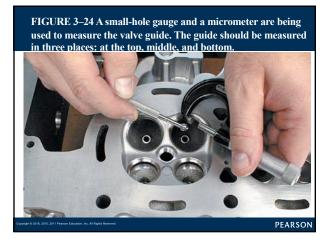
Cast-iron Cummins inline six-cylinder head is very heavy, requiring an engine hoist to remove it from the block. Attempting to lift the head without help or a hoist could result in personal injury

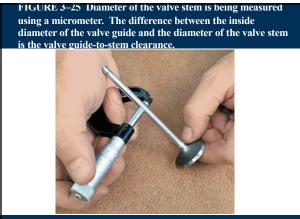
CYLINDER HEAD DISASSEMBLY (3 of 4)

- Cylinder Head Inspection
 - STEP 1 After removing old gasket material, use file & draw it across surface of head to remove any small burrs.
 - STEP 2 head should be checked in 5 planes. Checking cylinder head gasket surface in 5 planes checks head for warpage, distortion, bend, & twist.

FIGURE 3-22

CYLINDER HEAD DISASSEMBLY (4 of 4)


Injector Tips & Pre-chambers


- Protruded injector, or nozzle tip
 - Must be measured & compared to specs
 - Protrusions, which could include a prechamber on older indirect light vehicle diesel engines, must be checked & corrected if necessary when cylinder head is machined.

PEARSON

FIGURE 3–23 All aluminum cylinder heads use valve guide inserts.

0

DIAL INDICATOR (GAUGE)

PEARSON

Summary (1 of 4)

guide-to-stem clearance directly. Valve is usually held open to its maximum operating lift. After

checking in this direction,

rotate dial indicator and measure movement 90 degrees from what is shown.

- · Camshaft rotates at one-half crankshaft speed.
- · On overhead valve engines, camshaft is usually placed in the block above the crankshaft.
- Overhead camshaft engines use 1 or 2 camshafts located in cylinder head above cylinders, and called single overheard camshaft (SOHC) engines or double overhead camshaft (DOHC) engines, depending on design.

PEARSON

Summary (2 of 4)

- · Lobes of camshaft are usually lubricated by splash lubrication.
- Valve lift is usually expressed in decimal inches and represents distance that valve is lifted off valve seat.
- · In many engines, camshaft lobe lift is transferred to tip of valve stem to open valve by use of a rocker arm or follower.

Summary (3 of 4)

- Valve train clearance is also called valve lash, which is needed to help compensate for thermal expansion and wear.
- Pushrods transfer camshaft lobe movement upward from camshaft to rocker arm.
- Camshaft duration is number of degrees of crankshaft rotation for which valve is lifted off seat.
- Coolant and lubricating openings and passages are located throughout most cylinder heads.

PEARSON

Summary (4 of 4)

- Removing cylinder head is achieved by first loosening all of head bolts in reverse order of tightening sequence.
- Head should be checked in 5planes. Checking cylinder head gasket surface in 5planes checks head for warpage, distortion, bend, and twist.
- Valve guides should be checked for wear using a ball gauge or dial indicator. Typical valve stem-to-guide clearance is 0.001 to 0.003 inch for intake valves & 0.002 to 0.004 inch for exhaust valves.